Сверхновые звезды. Сверхновая звезда Как называется взрыв звезды

Сверхновые звезды. Сверхновая звезда Как называется взрыв звезды

01.11.2023

Давайте в ответе я не буду концентрироваться на механизме взрыва, который очень сложный, разнообразный и требующий долгих разъяснений, а лишь сконцентрируюсь на первоисточнике взрыва.

Есть 2 основных типа сверхновых (на самом деле всё сложнее, но сейчас давайте посмотрим упрощённую иерархию).

У сверхновых II типа (их иначе называют core collapse ) взрыв происходит, когда из-за нехватки центрального давления ядро звезды сжимается под собственной "тяжестью". После катастрофического сжатия следует образование нескольких ударных волн, которые распространяются наружу и, собственно, то, что мы называем взрывом.

Причина начала такого катастрофического сжатия в том, что в какой-то момент термоядерное "топливо" в центре звезды заканчивается. Когда у вас выгорает весь гелий, углерод и т.д., вы в конце концов добираетесь до железа и никеля - элементов с самой большой энергией ядра (на нуклон). После железа и никеля вы ничего производить в термоядерном горении не можете, так как всё быстро распадается обратно.

Если нет горения, то нет и внутреннего давления. Однако есть гравитация самого ядра, которую раньше удерживало внутреннее давление. Такой дисбаланс, который ещё иногда называют чандрасекаровской неустойчивостью , и даёт начало коллапсу и взрыву. Стоит отметить, что для такой неустойчивости нужно, чтобы масса ядра была бы ~1.4 массы Солнца, иначе коллапс остановится на стадии белого карлика из-за дополнительного давления вырожденных электронов. Для этого нужно, чтобы масса изначальной звезды была > 8-10 солнечных.

В итоге после такого взрыва образуется либо нейтронная звезда, либо, если масса начальной звезды была > 20 масс Солнца - чёрная дыра.

Механизм взрыва core-collapse сверхновых до сих пор до конца не понятен, не смотря на то, что люди занимаются этой проблемой уже больше полвека. Но... В общем, в ближайшие месяцы следите за публикациями на с аффилиацией Принстона и ключевой фамилией "A. Burrows" ;)

Сверхновые I типа имеют несколько другой механизм. Они происходят в двойных системах, где одна из звёзд - это белый карлик, а другая - обычная звезда, либо гигант, либо другой белый карлик. В какой-то момент вещество с компаньона начинает перетекать на белый карлик, накапливаясь на поверхности.

Как только общая масса карлика становится больше 1.4 массы Солнца, начинается развиваться та самая чандрасекаровская неустойчивость, и происходит дальнейший коллапс этого белого карлика и, собственно, взрыв.

В результате, скорее всего, образуется нейтронная звезда.

Что это за явление такое - шаровая молния, и почему в детстве предупреждали не двигаться, если она залетит в помещение?

Что вы знаете о сверхновых звездах? Наверняка скажете, что сверхновая звезда является грандиозным взрывом звезды, на месте которой остаётся нейтронная звезда или чёрная дыра.

Однако на самом деле не все сверхновые являются конечной стадией жизни массивных звезд. Под современную классификацию сверхновых взрывов, помимо взрывов сверхгигантов, входят также некоторые другие явления.

Новые и сверхновые

Термин «сверхновая» перекочевал от термина «новая звезда». «Новыми» называли звезды, которые возникали на небосклоне практически на пустом месте, после чего постепенно угасали. Первые «новые» известны ещё по китайским летописям, датируемым вплоть до второго тысячелетия до нашей эры. Что интересно, среди этих новых нередко встречались сверхновые. К примеру, именно сверхновую в 1571 году наблюдал Тихо Браге, который впоследствии ввёл термин «новая звезда». Сейчас нам известно, что в обоих случаях речь не идёт о рождении новых светил в буквальном смысле.

Новые и сверхновые звезды обозначают резкое увеличение яркости какой-либо звезды или группы звезд. Как правило, раньше люди не имели возможности наблюдать звёзды, которые порождали эти вспышки. Это были слишком тусклые объекты для невооруженного глаза или астрономического прибора тех лет. Их наблюдали уже в момент вспышки, что естественно походило на рождение нового светила.

Не смотря на схожесть этих явлений, в наши дни существует резкое различие в их определениях. Пиковая светимость сверхновых звезд в тысячи и сотни тысяч раз больше пиковой светимости новых. Такое расхождение объясняется принципиальным различием природы этих явлений.

Рождение новых звезд

Новые вспышки являются термоядерными взрывами, происходящим в некоторых тесных звездных системах. Такие системы состоят из и более крупной звезды-компаньона (звезды главной последовательности, субгиганта или ). Могучее тяготение белого карлика притягивает вещество из звезды-компаньона, в результате чего вокруг него образуется аккреционный диск. Термоядерные процессы, происходящие в аккреционном диске, временами теряют стабильность и приобретают взрывной характер.

В результате такого взрыва яркость звездной системы увеличивается в тысячи, а то и в сотни тысяч раз. Так происходит рождение новой звезды. Доселе тусклый, а то и невидимый для земного наблюдателя объект приобретает заметную яркость. Как правило, своего пика такая вспышка достигает всего за несколько дней, а затухать может годами. Нередко такие вспышки повторяются у одной и той же системы раз в несколько десятилетий, т.е. являются периодичными. Также вокруг новой звезды наблюдается расширяющаяся газовая оболочка.

Сверхновые взрывы обладают совершенно иной и более разнообразной природой своего происхождения.

Сверхновые принято разделять на два основных класса (I и II). Эти классы можно назвать спектральными, т.к. их отличает присутствие и отсутствие линий водорода в их спектрах. Также эти классы заметно отличаются визуально. Все сверхновые I класса схожи как по мощности взрыва, так и по динамике изменения блеска. Сверхновые же II класса весьма разнообразны в этом плане. Мощность их взрыва и динамика изменения блеска лежит в весьма обширном диапазоне.

Все сверхновые II класса порождаются гравитационным коллапсом в недрах массивных звезд. Другими словами, этот тот самый, знакомый нам, взрыв сверхгигантов. Среди сверхновых первого класса существуют те, механизм взрыва которых скорее схож с взрывом новых звезд.

Смерть сверхгигантов

Сверхновыми становятся звезды, масса которых превышает 8-10 солнечных масс. Ядра таких звезд, исчерпав, водород, переходят к термоядерным реакциям с участием гелия. Исчерпав гелий, ядро переходит к синтезу всё более тяжелых элементов. В недрах звезды создаётся всё больше слоёв, в каждом из которых происходит свой тип термоядерного синтеза. В конечной стадии своей эволюции такая звезда превращается в «слоёный» сверхгигант. В его ядре происходит синтез железа, тогда как ближе к поверхности продолжается синтез гелия из водорода.

Слияние ядер железа и более тяжёлых элементов происходит с поглощением энергии. Поэтому, став железным, ядро сверхгиганта больше не способно выделять энергию для компенсации гравитационных сил. Ядро теряет гидродинамическое равновесие и приступает к беспорядочному сжатию. Остальные слои звезды продолжают поддерживать это равновесие, до тех пор, пока ядро не сожмётся до некого критического размера. Теперь гидродинамическое равновесие теряют остальные слои и звезда в целом. Только в этом случае «побеждает» не сжатие, а энергия, выделившая в ходе коллапса и дальнейших беспорядочных реакций. Происходит сброс внешней оболочки – сверхновый взрыв.

Классовые различия

Различные классы и подклассы сверхновых объясняются тем, какой звезда была до взрыва. К примеру, отсутствие водорода у сверхновых I класса (подкласса Ib, Ic) является следствие того, что водорода не было у самой звезды. Вероятнее всего, часть её внешней оболочки была потеряна в ходе эволюции в тесной двойной системе. Спектр подкласса Ic отличается от Ib отсутствием гелия.

В любом случае сверхновые таких классов происходят у звезд, не имеющих внешней водородно-гелиевой оболочки. Остальные же слои лежат в довольно строгих пределах своего размера и массы. Это объясняется тем, что термоядерные реакции сменяют друг друга с наступлением определенной критической стадии. Поэтому взрывы звезд Ic и Ib класса так похожи. Их пиковая светимость примерно в 1,5 миллиардов раз превышает светимость Солнца. Эту светимость они достигают за 2-3 дня. После этого их яркость в 5-7 раз слабеет за месяц и медленно уменьшается в последующие месяцы.

Звёзды сверхновых II типа обладали водородно-гелиевой оболочкой. В зависимости от массы звезды и других её особенностей это оболочка может иметь различные границы. Отсюда объясняются широкий диапазон в характерах сверхновых. Их яркость может колебаться от десятков миллионов до десятков миллиардов солнечных светимостей (исключая гамма-всплески – см. дальше). А динамика изменения яркость имеет самый различный характер.

Трансформация белого карлика

Особую категорию сверхновых составляет вспышки . Это единственный класс сверхновых звезд, который может происходить в эллиптических галактиках. Такая особенность говорит о том, что эти вспышки не являются продуктом смерти сверхгигантов. Сверхгиганты не доживают до того момента, как их галактики «состарятся», т.е. станут эллиптическими. Также все вспышки этого класса имеют практически одинаковую яркость. Благодаря этому сверхновые Ia типа являются «стандартными свечами» Вселенной.

Они возникают по отличительно иной схеме. Как отмечалось ранее, эти взрывы по своей природе чем-то сходны с новыми взрывами. Одна из схем их возникновения предполагает, что они также зарождаются в тесной системе белого карлика и его звезды-компаньона. Однако, в отличие от новых звезд, здесь происходит детонация иного, более катастрофического типа.

По мере «пожирания» своего компаньона, белый карлик увеличивается в массе до тех пор, пока не достигнет предела Чандрасекара. Этот предел, примерно равный 1,38 солнечной массы, является верхней границы массы белого карлика, после которого он превращается в нейтронную звезду. Такое событие сопровождается термоядерным взрывом с колоссальным выделением энергии, на много порядков превышающим обычный новый взрыв. Практически неизменное значение предела Чандрасекара объясняет столь малое расхождение в яркостях различных вспышек данного подкласса. Эта яркость почти в 6 миллиардов раз превышает солнечную светимость, а динамика её изменения такая же, как у сверхновых Ib, Ic класса.

Гиперновые взрывы

Гиперновыми называют вспышки, энергия которых на несколько порядков превышает энергию типичных сверхновых. То есть, по сути они гиперновые являются очень яркими сверхновыми.

Как правило, гиперновым считается взрыв сверхмассивных звезд, также называемых . Масса таких звезд начинается с 80 нередко превышает теоретический предел 150 солнечных масс. Также существуют версии, что гиперновые звезды могут образовываться в ходе аннигиляции антиматерии, образованию кварковой звезды или же столкновением двух массивных звезд.

Примечательны гиперновые тем, что они являются основной причиной, пожалуй, самых энергоёмких и редчайших событий во Вселенной – гамма-всплесков. Продолжительность гамма всплесков составляет от сотых секунд до нескольких часов. Но чаще всего они длятся 1-2 секунду. За эти секунды они испускают энергию, подобную энергии Солнца за все 10 миллиардов лет её жизни! Природа гамма-всплесков до сих пор по большей части остаётся под вопросом.

Прародители жизни

Несмотря на всю свою катастрофичность, сверхновые по праву можно назвать прародителями жизни во Вселенной. Мощность их взрыва подталкивает межзвездную среду на образования газопылевых облаков и туманностей, в которых впоследствии рождаются звезды. Ещё одна их особенность состоит в том, что сверхновые насыщают межзвездную среду тяжелыми элементами.

Именно сверхновые порождают все химические элементы, что тяжелее железа. Ведь, как отмечалось ранее, синтез таких элементов требует затрат энергии. Только сверхновые способны «зарядить» составные ядра и нейтроны на энергозатратные производство новых элементов. Кинетическая энергия взрыва разносит их по пространству вместе с элементами, образовавшимися в недрах взорвавшейся звезды. В их число входят углерод, азот и кислород и прочие элементы, без которых невозможна органическая жизнь.

Наблюдение за сверхновыми

Сверхновые взрывы являются крайне редкими явлениями. В нашей галактике, содержащей более сотни миллиардов звёзд, происходит всего лишь несколько вспышек за столетие. Согласно летописным и средневековым астрономическим источникам, за последние две тысячи лет были зафиксированы лишь шесть сверхновых, видимых невооруженным глазом. Современным астрономам ни разу не доводилось наблюдать сверхновых в нашей галактике. Наиболее ближайшая произошла в 1987 в Большом Магеллановым Облаке, в одном из спутников Млечного Пути. Каждый год учёные наблюдают до 60 сверхновых, происходящих в других галактиках.

Именно из-за этой редкости сверхновые практически всегда наблюдаются уже в момент вспышки. События, предшествующие ей почти никогда не наблюдались, поэтому природа сверхновых до сих пор во многом остаётся загадочной. Современная наука не способна достаточно точно спрогнозировать сверхновые. Любая звезда-кандидат способна вспыхнуть лишь через миллионы лет. Наиболее интересна в этом плане Бетельгейзе, которая имеет вполне реальную возможность озарить земное небо на нашем веку.

Вселенские вспышки

Гиперновые взрывы случаются ещё реже. В нашей галактике такое событие случаются раз в сотни тысяч лет. Однако, гамма-всплески, порождаемые гиперновыми, наблюдаются почти ежедневно. Они настолько мощны, что регистрируются практически со всех уголков Вселенной.

К примеру, один из гамма-всплесков, расположенных в 7,5 миллиардов световых лет, можно было разглядеть невооружённым глазом. Произойти он в галактике Андромеда, земное небо на пару секунд осветила звезда с яркостью полной луны. Произойти он на другом краю нашей галактики, на фоне Млечного Пути появилось бы второе Солнце! Получается, яркость вспышки в квадриллионы раз ярче Солнца и в миллионы раз ярче нашей Галактики. Учитывая, что галактик во Вселенной миллиарды, неудивительно, почему такие события регистрируются ежедневно.

Влияние на нашу планету

Маловероятно, что сверхновые могут нести угрозу современному человечеству и каким-либо образом повлиять на нашу планету. Даже взрыв Бетельгейзе лишь осветит наше небо на несколько месяцев. Однако, безусловно, они решающим образом влияли на нас в прошлом. Примером тому служит первое из пяти массовых вымираний на Земле, произошедших 440 млн. лет назад. По одной из версий причиной этому вымиранию послужил гамма-вспышка, произошедшая в нашей Галактике.

Более примечательна совсем иная роль сверхновых. Как уже отмечалось, именно сверхновые создают химические элементы, необходимые для появления углеродной жизни. Земная биосфера не была исключением. Солнечная система сформировалось в газовом облаке, которые содержали осколки былых взрывов. Получается, мы все обязаны сверхновым своим появлением.

Более того, сверхновые и в дальнейшем влияли на эволюцию жизни на Земле. Повышая радиационный фон планеты, они заставляли организмы мутировать. Не стоит также забывать про крупные вымирания. Наверняка сверхновые не единожды «вносили коррективы» в земную биосферу. Ведь не будь тех глобальный вымираний, на Земле бы сейчас господствовали совсем другие виды.

Масштабы звездных взрывов

Чтобы наглядно понять, какой энергией обладают сверхновые взрывы, обратимся к уравнению эквивалента массы и энергии. Согласно нему, в каждом грамме материи заключено колоссальное количество энергии. Так 1 грамм вещества эквивалентен взрыву атомной бомбы, взорванной над Хиросимой. Энергия царь-бомбы эквивалента трём килограммам вещества.

Каждую секунду ходе термоядерных процессов в недрах Солнца 764 миллиона тонн водорода превращается в 760 миллион тонн гелия. Т.е. каждую секунду Солнце излучает энергию, эквивалентную 4 млн. тоннам вещества. Лишь одна двухмиллиардная часть всей энергии Солнца доходит до Земли, это эквивалентно двум килограммам массы. Поэтому говорят, что взрыв царь-бомбы можно было наблюдать с Марса. К слову, Солнце доставляет на Землю в несколько сотен раз больше энергии, чем потребляет человечество. То есть, чтобы покрыть годовые энергетические потребности всего современного человечества нужно превращать в энергию всего несколько тонн материи.

Учитывая вышесказанное, представим, что средняя сверхновая в своём пике «сжигает» квадриллионы тон вещества. Это соответствует массе крупного астероида. Полная же энергия сверхновой эквивалентна массе планеты или даже маломассивной звезды. Наконец, гамма-всплеск за секунды, а то и за доли секунды своей жизни, выплёскивает энергию, эквивалентную массе Солнца!

Такие разные сверхновые

Термин «сверхновая» не должен ассоциироваться исключительно с взрывом звёзд. Эти явления, пожалуй, также разнообразны, как разнообразны сами звёзды. Науке только предстоит понять многие их секреты.

На нашей планете такие благородные металлы, как золото и серебро предпочитают встречаться вместе. Долгое время считалось, что и в космосе они дружат — оба этих элемента производят одни и те же звезды. Однако работа немецкого астрофизика Камиллы Хансен показала, что это не так. Серебро рождается при взрыве одних звезд, а золото — совсем других.

Согласно самой распространенной на данный момент версии о появлении тяжелых металлов во Вселенной, эти элементы рождаются в недрах светил. Расчеты показывают, что за счет экстремального давления и огромных температур внутри них начинают протекать ядерные реакции синтеза. Начинается все с элементарного превращение ядер водорода в таковые гелия, однако после в массивных звездах начинаются и более интересные вещи.

Так, под влиянием огромных сил гравитации, температуры и давления внутри звезды ядра простейших элементов настолько сближаются с бегающими вокруг свободными альфа-частицами (это ядра гелия), а также протонами, нейтронами (их источником являются реакции соединения ядер изотопов 12 С с образованием в одном случае 23 Na, а в другом — 23 Mg). В какой-то момент они даже начинают соединяться друг с другом — и это несмотря на электростатическое отталкивание одноименно заряженных зарядов. В результате такие ядра "обрастают" все новыми и новыми частицами, что приводит к появлению все более тяжелых химических элементов — от углерода, азота, кислорода, фосфора до железа, свинца и урана.

Таким образом, получается, что практически всю таблицу Менделеева в процессе эволюции Вселенной создали именно светила — исходно из кварк-глюоновой плазмы возникли лишь водоворот, гелий ну и, возможно, литий. Согласно моделям ученых, то, какие именно элементы создаст звезда, во многом зависит от ее массы. Считается, что самые тяжелые получаются при взрывах сверхновых самых массивных светил. Именно такие светящиеся "толстячки" и рождают самые ценные металлы для человечества — серебро и золото.

Исходя из этого, долгое время ученые думали, что эти два благородных элемента могут быть порождены одной звездой, или, по крайней мере, светилами одной "весовой" категории. Однако недавнее исследование доктора Камиллы Хансен из Гейдельбергского университета показало, что это не так. Она установила, что серебро появляется только в результате взрыва определенных типов звезд, которые весьма отличны от тех, что "производят" золото.

Астрофизик проанализировала множество данных о взрывах сверхновых, после которых были обнаружены следы серебра. Удивительно, что золота там практически не было. Аналогичная картина наблюдалась и в обратном случае — "золотые" сверхновые не давали значительного серебряного "следа". Из этого г-жа Хансен сделала закономерный вывод — производство этих металлов, скорее всего, зависит не только от массы звезды, поскольку многие исследуемые светила находились в одной весовой категории.

Впрочем, не исключено, что разница в массе все-таки была, просто не такая существенная — поэтому астрофизикам и не удалось ее обнаружить. "Мы получили первое доказательство существования специального процесса плавления внутри звезд. Теперь нужно заняться моделированием процесса взрыва именно такой сверхновой, которая образует серебро. Таким образом мы сможем понять, насколько тяжелой была эта звезда в момент своей драматической смерти и были ли у нее какие-то особенности, благоприятствующие синтезу именно серебра" — так охарактеризовала профессор Хансен полученные ей результаты.

По словам астрофизиков, эта работа может быть интересна, с одной стороны тем, что позволит выработать более точный способ оценки массы сверхновых. С другой стороны, она поднимает старый, но в то же время интересный вопрос — только ли от массы звезды зависит то, какие именно элементы получаются в горниле ее недр? Может быть, в этом процессе участвуют и другие факторы, которые ученые пока еще не обнаружили? Ответ может дать пока что лишь модель, которую предлагает построить г-жа Хансен.

Любопытно, что в отличии от дальнего космоса, на нашей планете золото и серебро обычно все-таки "дружат". Даже в самородном золоте встречаются серебряные примеси, а в таких минералах, как мутманит (Ag AuTe), сильванит (AuAgTe 4), петицит (Ag 3 AuTe 2) и электрум (Ag Au), доля серебра может достигать 45-50 процентов. То есть на Земле эти два элемента предпочитают встречаться вместе, хотя в космосе они появляются порознь.

Сверхновая звезда, или взрыв сверхновой — процесс колоссального взрыва звезды в конце ее жизни. При этом освобождается огромная энергия, а светимость возрастает в миллиарды раз. Оболочка звезды выбрасывается в космос, образуя туманность. А ядро сжимается настолько, что становится либо , либо .

Химическая эволюция вселенной протекает именно благодаря сверхновым. Во время взрыва в пространство выбрасываются тяжелые элементы, образующиеся во время термоядерной реакции при жизни звезды. Далее из этих остатков формируются с планетарными туманностями, из которых в свою очередь образуются звёзды с планетами.

Как происходит взрыв

Как известно, звезда выделяет огромную энергию благодаря термоядерной реакции, происходящей в ядре. Термоядерная реакция — это процесс превращения водорода в гелий и более тяжелые элементы с выделением энергии. Но вот когда водород в недрах заканчивается, верхние слои звезды начинают обрушиваться к центру. После достижения критической отметки вещество буквально взрывается, всё сильнее сжимая ядро и унося верхние слои звезды ударной волной.

В довольно малом объеме пространства образуется при этом столько энергии, что часть ее вынуждено уносить нейтрино, у которой практически нет массы.

Сверхновая типа Ia

Этот вид сверхновых рождается не из звезд, а из . Интересная особенность — светимость всех этих объектов одинакова. А зная светимость и тип объекта, можно вычислить его скорость по . Поиск сверхновых типа Ia очень важен, ведь именно с их помощью обнаружили и доказали ускоряющееся расширение вселенной.

Возможно, завтра они вспыхнут

Существует целый список, в который включены кандидаты в сверхновые звёзды. Конечно, достаточно сложно определить, когда именно произойдет взрыв. Вот ближайшие из известных:

  • IK Пегаса. Двойная звезда расположена в созвездии Пегас на удалении от нас до 150 световых лет. Её спутник – массивный белый карлик, который уже перестал производить энергию посредством термоядерного синтеза. Когда главная звезда превратится в красный гигант и увеличит свой радиус, карлик начнёт увеличивать массу за счёт неё. Когда его масса достигнет 1,44 солнечной, может произойти взрыв сверхновой.
  • Антарес . Красный сверхгигант в созвездие Скорпиона, от нас до него 600 световых лет. Компанию Антаресу составляет горячая голубая звезда.
  • Бетельгейзе. Подобный Антаресу объект, находится в созвездии Орион. Расстояние до Солнца от 495 до 640 световых лет. Это молодое светило (около 10 миллионов лет), но считается, что оно достигло фазы выгорания углерода. Уже в течение одного-двух тысячелетий мы сможем полюбоваться взрывом сверхновой.

Влияние на Землю

Сверхновая звезда, взорвавшись поблизости, естественно, не может не повлиять на нашу планету. Например, Бетельгейзе, взорвавшись, увеличит яркость примерно в 10 тысяч раз. Несколько месяцев звезда будет иметь вид сияющей точки, по яркости подобной полной Луне. Но если какой-либо полюс Бетельгейзе будет обращён на Землю, то она получит от звезды поток гамма-лучей. Усилятся полярные сияния, уменьшится озоновый слой. Это может оказать очень негативное влияние на жизнь нашей планеты. Всё это только теоретические расчёты, каким же фактически будет эффект взрыва этого супергиганта, точно сказать нельзя.

Смерть звезды, так же, как и жизнь, иногда бывает очень красивой. И пример тому – сверхновые звёзды. Их вспышки мощны и ярки, они затмевают все светила, что расположены рядом.

Чарущий вид величественного звездного неба только на первый взгляд кажется неизменным. Каждый, кто наблюдал за небом в течение нескольких часов обязательно заметит "падающие звезды" - метеоры . Ну а тот, кто внимательно следит за звездами изо дня в день имеет в своей жизни большой шанс обнаружить новую звезду , возникшую как бы на пустом месте. Блеск такой звезды постепенно увеличивался, достигал максимума и через некоторое время (порядка нескольких месяцев) ослабевал настолько, что звезда становилась невидимой вооруженным глазом, исчезала. Еще более грандиозное небесное явление, получившее назвазние сверхновой звезды , даже оставило свой след во многих исторических летописях разных народов, потому что блеск такой сверхновой звезды, появившейся опять же как бы на пустом месте, иногда достигал такой величины, что звезда становилась видимой даже днем! Явления новых звезд были обнаружены в глубокой древности, а в последие сто лет, когда астрономические наблюдения стали носить регулярный характер, а вид звездного неба стало возможно "протоколировать" на фотопластинках , стало ясно, что на месте "новых" звезд на самом деле есть слабенькие звездочки -- просто внезапно их блеск увеличивается, достигает максимума и затем вновь уменьшается до "спокойного" уровня. Более того, стало ясно, что иногда явление новой звезды происходит более или менее регулярно на одном и том же месте, то есть одна и та же звезда по каким-то причинам раз в сто лет или чаще сильно увеличивает свою светимость . Не так обстоит дело со сверхновыми -- если на их месте до начала вспышки и заметна звезда (как, например, в случае последней относительно яркой сверхновой 1987 г. в Большом Магеллановом Облаке ), то после вспышки эта звезда действительно "исчезает", сбрасывает оболочку, которая затем наблюдается долгие годы как светящаяся туманность - остаток вспышки сверхновой , и, как впервые стало ясно в 30-е гг. ХХ века голландским астрономам Бааде и Цвикки , в результате может образоваться сверхплотная нейтронная звезда или даже загадочная черная дыра . Эта гипотеза обратилась в уверенность после открытия пульсара - быстровращающейся нейтронной звезды с периодом 33 миллисекунды в центре известной Крабовидной туманности в созвездии Тельца , появившейся на месте вспышки сверхновой 1054 г.

Новые звезды

Итак, явления новых и сверхновых звезд имеют совершенно различную природу. Каково же современное представление о них? Начнем с новых звезд . Во время вспышки блеск новой увеличивается на 12-13 звездых величин , а выделяемая энергия доходит до эрг (такая энергия выделяется Солнцем примерно за 100 тысяч лет!). До середины 50-х годов природа вспышек новых звезд оставалась неясной. Но в 1954 г. было обнаружено, что известная новая звезда DQ Геркулеса входит в состав тесной двойной звездной системы с орбитальным периодом несколько часов. В дальнейшем оказалось, что все новые звезды являются компонентами тесных двойных систем, в которых одна звезда - как правило звезда главной последовательности типа нашего Солнца, а вторая - компактный, с размерами в сотую долю от радиуса Солнца (а он равен примерно 700000 км), белый карлик . Орбита такой двойной звезды настолько тесна, что нормальная звезда оказывается сильно деформированной приливным воздействием компактного соседа - белого карлика, и плазма из атмосферы этой звезды может свободно падать на белый карлик, образуя вокруг него дискообразную оболочку (аккреционный диск ). Вещество в диске тормозится вязкими силами , нагревается и образует свечение (именно оно и наблюдается в спокойном состоянии), и в конце концов достигает поверхности белого карлика. По мере падения этого вещества, на белом карлике образуется плотный тонкий слой, температура которого постепенно возрастает. В конце концов (как раз за характерное время от нескольких лет до сотен лет) физические условия в этом поверхностном слое (температура и плотность ) достигают столь высоких значений, что столкновения быстрых протонов начинают приводить к термоядерной реакции синтеза гелия . Но в отличие от центральных частей Солнца, где эта реакция идет достаточно медленно из-за специфического свойства устойчивых звезд - отрицательной теплоемкости их недр - на поверхности белого карлика реакция носит взрывообразный характер (главным образом из-за очень большой плотности вещества). Именно этот термоядерный взрыв на поверхности белого карлика и приводит к сбросу накопившейся оболочки (кстати, весьма малой массы - "всего" около сотой доли массы Солнца , т.е. 10 масс Юпитера ), разлет и свечение которой и наблюдается как феномен новой звезды . Несмотря на выделенную энергию в эрг, разлетающаяся оболочка практически не оказывает заметного воздействия на соседнюю звезду, и та продолжает "поставлять" свежее "топливо" для следующего взрыва . Как показывают оценки, число новых звезд, ежегодно вспыхивающих в нашей Галактике , достигает сотни. Ясно, что межзвездное поглощение и распределение звезд по расстояниям от Солнца делает невозможным наблюдение всех этих объектов. Но самые яркие новые звезды довольно часто бывают видны невооруженным глазом (лет 20 назад, в 1975 году, новая звезда в созвезди Лебедя около полугода "искажала" крестообразную конфигурацию этого созвездия). С началом эры рентгеновской астрономии (60-е годы) выяснилось, что новые звезды вспыхивают не только в оптическом диапазоне - так, в 70-е годы были открыты т.н. рентгеновские барстеры - регулярно вспыхивающие рентгеновские источники. механизм их вспышек практически тот же, что и для классических новых звезд, за тем исключением, что компактная звезда в тесной двойной системе, как выяснилось, не белый карлик, а еще более компактная нейтронная звезда с радиусом всего в 10 км! Вещество нормальной звезды типа Солнца или красного карлика "срывается" приливными силами со стороны нейтронной звезды, образует аккреционный диск , попадает на поверхность нейтронной звезды без большого магнитного поля , нагревается там и приводит к повторяющимся термоядерным взрывам . А большая компактность нейтронной звезды приводит к тому, что основная энергия при взрыве уходит в виде более энергичных рентгеновских квантов .

Наконец, нельзя не упомянуть еще об одном типе новых звезд - рентгеновских новых звездах , которые впыхивают в рентгеновском диапазоне на несколько месяцев, а затем полностью исчезают. Сейчас таких рентгеновских новых известно около 10, и самое волнующее открытие последних лет, сделанное совместными усилиями рентгеновских и оптических астрономов России, Украины (с борта орбитального комплекса МИР-Квант и обсерватории "Гранат" и в Крымской Астрофизической Обсерватории ) и за рубежом, состоит в том, что во всех рентгеновских новых компактными звездами является, по-видимому, черные дыры с массой около 10 масс Солнца, существование которых неизбежно следует из Общей теории относительности А.Эйнштейна . Природа вспышки здесь существенно иная, чем у классических новых звезд и рентгеновских барстеров , т.к. черные дыры не имеют какой-либо поверхности, на которой может скапливаться аккрецируемое вещество. Как полагают, выспышка рентгеновской новой связана с внезапным гигантским энерговыдлением в окружающем черную дыру аккреционном диске , и выяснение причины такого неустойчивого поведения аккреционных дисков - одна из актуальных задач современной астрофизики.

Сверхновые звезды

Теперь несколько слов о сверхновых 1-го типа . Отсутствие свечения водорода в их спектрах говорит о том, что взрыв произошел в звезде, лишенной водородной оболочки. Как сейчас полагают, это может быть звезда типа Вольфа-Райе (фактически это богатые гелием, углеродом и кислородом ядра звезд , у которых давление света "сдуло" верхнюю водородную оболочку , или же, если такая массивная звезда входила в состав тесной двойной системы , эта оболочка "перетекла " на соседнюю звезду под действием мощных приливных сил), у которой коллапсирует проэволюционировавшее ядро (т.н. сверхновые типа 1b), или взрывающийся

© 2024 sch296.ru - Отношения. Вдохновение. Деньги и успех. Медитация. Гороскопы